Source code for federatedscope.cv.model.cnn

import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.nn import Module
from torch.nn import Sequential
from torch.nn import Conv2d, BatchNorm2d
from torch.nn import Flatten
from torch.nn import Linear
from torch.nn import MaxPool2d
from torch.nn import ReLU


[docs]class ConvNet2(Module): def __init__(self, in_channels, h=32, w=32, hidden=2048, class_num=10, use_bn=True, dropout=.0): super(ConvNet2, self).__init__() self.conv1 = Conv2d(in_channels, 32, 5, padding=2) self.conv2 = Conv2d(32, 64, 5, padding=2) self.use_bn = use_bn if use_bn: self.bn1 = BatchNorm2d(32) self.bn2 = BatchNorm2d(64) self.fc1 = Linear((h // 2 // 2) * (w // 2 // 2) * 64, hidden) self.fc2 = Linear(hidden, class_num) self.relu = ReLU(inplace=True) self.maxpool = MaxPool2d(2) self.dropout = dropout
[docs] def forward(self, x): x = self.bn1(self.conv1(x)) if self.use_bn else self.conv1(x) x = self.maxpool(self.relu(x)) x = self.bn2(self.conv2(x)) if self.use_bn else self.conv2(x) x = self.maxpool(self.relu(x)) x = Flatten()(x) x = F.dropout(x, p=self.dropout, training=self.training) x = self.relu(self.fc1(x)) x = F.dropout(x, p=self.dropout, training=self.training) x = self.fc2(x) return x
[docs]class ConvNet5(Module): def __init__(self, in_channels, h=32, w=32, hidden=2048, class_num=10, dropout=.0): super(ConvNet5, self).__init__() self.conv1 = Conv2d(in_channels, 32, 5, padding=2) self.bn1 = BatchNorm2d(32) self.conv2 = Conv2d(32, 64, 5, padding=2) self.bn2 = BatchNorm2d(64) self.conv3 = Conv2d(64, 64, 5, padding=2) self.bn3 = BatchNorm2d(64) self.conv4 = Conv2d(64, 128, 5, padding=2) self.bn4 = BatchNorm2d(128) self.conv5 = Conv2d(128, 128, 5, padding=2) self.bn5 = BatchNorm2d(128) self.relu = ReLU(inplace=True) self.maxpool = MaxPool2d(2) self.fc1 = Linear( (h // 2 // 2 // 2 // 2 // 2) * (w // 2 // 2 // 2 // 2 // 2) * 128, hidden) self.fc2 = Linear(hidden, class_num) self.dropout = dropout
[docs] def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.maxpool(x) x = self.relu(self.bn2(self.conv2(x))) x = self.maxpool(x) x = self.relu(self.bn3(self.conv3(x))) x = self.maxpool(x) x = self.relu(self.bn4(self.conv4(x))) x = self.maxpool(x) x = self.relu(self.bn5(self.conv5(x))) x = self.maxpool(x) x = Flatten()(x) x = F.dropout(x, p=self.dropout, training=self.training) x = self.relu(self.fc1(x)) x = F.dropout(x, p=self.dropout, training=self.training) x = self.fc2(x) return x
[docs]class VGG11(Module): def __init__(self, in_channels, h=32, w=32, hidden=128, class_num=10, dropout=.0): super(VGG11, self).__init__() self.conv1 = Conv2d(in_channels, 64, 3, padding=1) self.bn1 = BatchNorm2d(64) self.conv2 = Conv2d(64, 128, 3, padding=1) self.bn2 = BatchNorm2d(128) self.conv3 = Conv2d(128, 256, 3, padding=1) self.bn3 = BatchNorm2d(256) self.conv4 = Conv2d(256, 256, 3, padding=1) self.bn4 = BatchNorm2d(256) self.conv5 = Conv2d(256, 512, 3, padding=1) self.bn5 = BatchNorm2d(512) self.conv6 = Conv2d(512, 512, 3, padding=1) self.bn6 = BatchNorm2d(512) self.conv7 = Conv2d(512, 512, 3, padding=1) self.bn7 = BatchNorm2d(512) self.conv8 = Conv2d(512, 512, 3, padding=1) self.bn8 = BatchNorm2d(512) self.relu = ReLU(inplace=True) self.maxpool = MaxPool2d(2) self.fc1 = Linear( (h // 2 // 2 // 2 // 2 // 2) * (w // 2 // 2 // 2 // 2 // 2) * 512, hidden) self.fc2 = Linear(hidden, hidden) self.fc3 = Linear(hidden, class_num) self.dropout = dropout
[docs] def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.maxpool(x) x = self.relu(self.bn2(self.conv2(x))) x = self.maxpool(x) x = self.relu(self.bn3(self.conv3(x))) x = self.maxpool(x) x = self.relu(self.bn4(self.conv4(x))) x = self.maxpool(x) x = self.relu(self.bn5(self.conv5(x))) x = self.maxpool(x) x = self.relu(self.bn6(self.conv6(x))) x = self.maxpool(x) x = self.relu(self.bn7(self.conv7(x))) x = self.maxpool(x) x = self.relu(self.bn8(self.conv8(x))) x = self.maxpool(x) x = Flatten()(x) x = F.dropout(x, p=self.dropout, training=self.training) x = self.relu(self.fc1(x)) x = F.dropout(x, p=self.dropout, training=self.training) x = self.relu(self.fc2(x)) x = F.dropout(x, p=self.dropout, training=self.training) x = self.fc3(x) return x