Source code for federatedscope.cv.dataloader.dataloader

from federatedscope.cv.dataset.leaf_cv import LEAF_CV
from federatedscope.core.auxiliaries.transform_builder import get_transform


[docs]def load_cv_dataset(config=None): """ Return the dataset of ``femnist`` or ``celeba``. Args: config: configurations for FL, see ``federatedscope.core.configs`` Returns: FL dataset dict, with ``client_id`` as key. Note: ``load_cv_dataset()`` will return a dict as shown below: ``` {'client_id': {'train': dataset, 'test': dataset, 'val': dataset}} ``` """ splits = config.data.splits path = config.data.root name = config.data.type.lower() transforms_funcs, val_transforms_funcs, test_transforms_funcs = \ get_transform(config, 'torchvision') if name in ['femnist', 'celeba']: dataset = LEAF_CV(root=path, name=name, s_frac=config.data.subsample, tr_frac=splits[0], val_frac=splits[1], seed=1234, **transforms_funcs) else: raise ValueError(f'No dataset named: {name}!') client_num = min(len(dataset), config.federate.client_num ) if config.federate.client_num > 0 else len(dataset) config.merge_from_list(['federate.client_num', client_num]) # Convert list to dict data_dict = dict() for client_idx in range(1, client_num + 1): data_dict[client_idx] = dataset[client_idx - 1] return data_dict, config