import numpy as np
from federatedscope.core.splitters import BaseSplitter
from federatedscope.core.splitters.utils import \
dirichlet_distribution_noniid_slice
[docs]class LDASplitter(BaseSplitter):
"""
This splitter split dataset with LDA.
Args:
client_num: the dataset will be split into ``client_num`` pieces
alpha (float): Partition hyperparameter in LDA, smaller alpha \
generates more extreme heterogeneous scenario see \
``np.random.dirichlet``
"""
def __init__(self, client_num, alpha=0.5):
self.alpha = alpha
super(LDASplitter, self).__init__(client_num)
def __call__(self, dataset, prior=None, **kwargs):
from torch.utils.data import Dataset, Subset
tmp_dataset = [ds for ds in dataset]
label = np.array([y for x, y in tmp_dataset])
idx_slice = dirichlet_distribution_noniid_slice(label,
self.client_num,
self.alpha,
prior=prior)
if isinstance(dataset, Dataset):
data_list = [Subset(dataset, idxs) for idxs in idx_slice]
else:
data_list = [[dataset[idx] for idx in idxs] for idxs in idx_slice]
return data_list