Answering Multi-Dimensional Analytical Queries under Local Differential Privacy

less than 1 minute read

Multi-dimensional analytical (MDA) queries are often issued against a fact table with predicates on (categorical or ordinal) dimensions and aggregations on one or more measures. In this paper, we study the problem of answering MDA queries under local differential privacy (LDP). In the absence of a trusted agent, sensitive dimensions are encoded in a privacy-preserving (LDP) way locally before being sent to the data collector. The data collector estimates the answers to MDA queries, based on the encoded dimensions. We propose several LDP encoders and estimation algorithms, to handle a large class of MDA queries with different types of predicates and aggregation functions. Our techniques are able to answer these queries with tight error bounds and scale well in high-dimensional settings (i.e., error is polylogarithmic in dimension sizes). We conduct experiments on real and synthetic data to verify our theoretical results, and compare our solution with marginal-estimation based solutions.

Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui Li, Somesh Jha: Answering Multi-Dimensional Analytical Queries under Local Differential Privacy. SIGMOD Conference 2019: 159-176 download